
  

PARASA RAMA KAMALA RAJESWARI 1 

 

Monitoring Property Parcels Using Semantic EO Data Cubes 
Course: Analysis & Modelling | Topic: Parcel-based analysis 

 

Rama Kamala Rajeswari Parasa 

August, 2023 

 

 

 

Contents 
 

1. Introduction & Literature .................................................................................................................... 3 

1.1. Background .................................................................................................................................. 3 

1.2. Parcel-based analysis ................................................................................................................... 4 

1.3. Research questions ....................................................................................................................... 5 

2. Materials & Methods ............................................................................................................................. 5 

2.1. Study Parcels ................................................................................................................................. 5 

2.2. Data Access ................................................................................................................................... 6 

2.2.1. Semantic EO data cube & Semantique ............................................................................... 6 

2.2.2. Cloud and snow filters .......................................................................................................... 7 

2.2.3. Vegetation mask ................................................................................................................... 7 

2.3. Semantic Parcel History .............................................................................................................. 8 

2.4. Proposed ‘Green Score’ ................................................................................................................ 9 

3. Results .................................................................................................................................................. 11 

3.1. Semantic Parcel History ............................................................................................................. 11 

3.2. Green Score ................................................................................................................................. 15 

4. Discussion & Conclusions ................................................................................................................... 19 

5. Acknowledgements ............................................................................................................................. 19 

6. References ........................................................................................................................................... 20 

 

  



  

PARASA RAMA KAMALA RAJESWARI 2 

 

Abstract 

Monitoring the development status of real-estate properties is in the monetary interest of 

banks and other financing institutions. Further, assessing the environmental impact and 

climate risk is increasingly becoming an important part of the calculation of creditworthiness 

of the properties due to push from regulations and policies for climate resilience. Open and 

freely available timeseries satellite data have proved to be a critical resource in retrieving latest 

land cover information and also temporal changes. This study explores the potential of 

utilising open and free Copernicus Sentinel-2 data specifically, in the context of property 

parcels for – (a) retrieving the semantic parcel history and, (b) measuring a proposed ‘green 

score’ for vegetation on the parcel. These two components partially contribute towards 

understanding the developmental changes and the green cover on the parcel respectively. In 

order to fulfil its objectives, the study fundamentally uses Semantique python library to query 

an Austrian semantic Earth observation (EO) data cubes infrastructure (sen2cube.at). 
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1. Introduction & Literature 

1.1. Background 
Valuation and credit ratings of real-estate properties are important tools for assessing their 

monetary value and their creditworthiness. They provide an insight into the financial health 

of the property, its risk profile, ability to recover costs and generate income. The ratings inform 

investors and lending institutions to make critical financial decisions such as identifying the 

most profitable locations to invest, estimating projected rent income from a property, 

ascertaining collateral value and potential losses from a property, and so on (Plazzi et al., 

2008; Ivanov & Faulkner, 2020). 

The real estate assessments consider data inputs of the parcel such as location, size, age, 

surrounding neighbourhood, travel accessibility, land development status, sale price, zoning, 

utilities, etc (Pagourtzi et al., 2003; Kokot & Gnat, 2019). Conventionally, much of this 

information is gathered from sources such as public records maintained by government 

agencies, physical property inspections, online real estate databases, local government data 

and building permits and records (European Valuation Practice: Theory and Techniques, 

1996). Some of these data sources and data collection practices can be prohibitively expensive, 

error prone or infrequent. For instance, conducting multiple site visits for physical inspections 

can be highly expensive for the evaluators in the long run (Nightingale & Rossman, 1994). This 

can hinder the monitoring of construction activity or other land development changes. 

Similarly, public government records may fail to provide up-to date information due to 

reporting delays (Gee, 2008).  

Additionally, monitoring of environmental aspects of the real-estate properties is becoming 

increasingly important. This is because, international commitments like the Paris Agreement, 

2015, and legislation like the EU's Sustainable Finance Taxonomy are now attempting to 

establish concepts such as ‘sustainable finance’ and align cash flows with sustainable economic 

activities (OBSERVER, 2023). For real-estate sector, this could potentially translate into 

policies such as evaluating the green cover on the property parcels or identifying solar roofs 

within them resulting in a favourable rating of those properties.  

In this context, open and freely available satellite data is proposed as a viable resource to be 

integrated with the conventional practices of real-estate assessment (Wei et al., 2022). Openly 

available satellite data has been established in literature as a valuable data source for studying 

several land related phenomena. Examples of such phenomena include, land cover changes, 

urban expansions, neighbourhood characteristics, urban heat islands, crop activity and so on 

(Weng et al., 2004, Munafò & Congedo, 2017; Deng et al., 2017; Guerri et al., 2022, Segara et 

al., 2020). Characteristics such as high temporal resolution and considerable spatial 

resolution allow for EO data to be used for such rigorous analysis of land over time. Hence, 

these properties of EO data are of great value in real-estate. Consider, for instance, Sentinel-2 

that has a spatial resolution of 10m (also 20m and 60m) and a revisit time of 5 days at equators 

with both operational satellites and more frequent at high latitudes (at different viewing 

angles). Contrasting the temporal frequency of Sentinel-2 against that of the government 

records that are updated and published either quarterly or less frequently, paints a clearer 

picture of the potential of EO data in providing regular, up-to date and verifiable information 

about the land. When integrated with the current assessment processes, it can also 

substantially bring down the costs for site visits. 

  

https://doi.org/10.1111/j.1540-6229.2008.00218.x
https://doi.org/10.1111/j.1540-6229.2008.00218.x
https://doi.org/10.1108/JES-05-2020-0231
https://doi.org/10.1108/14635780310483656
https://doi.org/10.2478/foli-2019-0012
https://www.routledge.com/European-Valuation-Practice-Theory-and-Techniques/Adair-Downie-McGreal-Vos/p/book/9780419200406
https://www.routledge.com/European-Valuation-Practice-Theory-and-Techniques/Adair-Downie-McGreal-Vos/p/book/9780419200406
https://doi.org/10.1002/9781119171386.ch17
https://doi.org/10.1080/08963560903554658
https://www.copernicus.eu/en/news/news/observer-how-copernicus-helps-implement-sustainable-finance-and-ensure-sustainable-growth
https://www.mdpi.com/2073-445X/11/3/334
https://doi.org/10.1016/j.rse.2003.11.005
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315715674-2/measuring-monitoring-land-cover-michele-munaf%C3%B2-luca-congedo
https://doi.org/10.3390/rs11101230
https://doi.org/10.3390/su14148412
https://doi.org/10.3390/agronomy10050641
https://doi.org/10.3390/agronomy10050641
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1.2. Parcel-based analysis 
 

 

Figure 1: Illustration for parcel-based approach (Source: Author’s own) 

Parcel-based analysis techniques analyse satellite data at the level of individual parcels or land 

units (Blaschke et al., 2008). Figure 1 shows an illustration of such an approach. The grid 

(yellow) represents a raster from which information is extracted for the parcel (in red). These 

land units are generally property boundaries defined in cadastral maps or administrative 

units. Parcel-based methods can be contrasted with pixel-based approaches that perform 

analysis at the level of individual pixels, considering each pixel as discrete unit. Further, 

compared to the image-object-based approaches, wherein image objects are created strictly 

based on internal homogeneity principles, parcel-based approaches differ in the sense that 

each parcel represents a real-world unit of land that is under a unified ownership (Ibid.).  

There are some notable advantages to parcel-based approaches compared to other approaches 

discussed above. Firstly, they can incorporate semantic information associated with the parcel, 

such as ownership information, policy or regulation related information, etc. Secondly, they 

capture internal heterogeneity within the individual units. This is useful when the spatial 

context and spectral variation within the parcel needs to be analysed. Finally, since the parcels 

hold an inherent meaning, i.e., each unit is under one ownership, the results produced are 

potentially transferable to other use cases that use the same parcels as the unit of analysis. One 

main limitation to parcel-based approaches is that, when the size of the parcel is much smaller 

than a pixel of the imagery, then it is highly complex to interpret the results. This complexity 

is resulted from mixed pixel problems that occur due to presence of overlapping spectral 

information, within the same pixel, received from two different but adjacent physical features, 

such as vegetation and built-up (Sozzi et al., 2020; Vélez et al., 2020; Qarallah et al., 2022). 

In such scenarios, obtaining high-resolution imagery, such as from UAV platforms or 

commercial satellites, is recommended (Sozzi et al., 2020 ; Vélez et al., 2020).    

Extensive literature is available showing use of parcel-based approaches in diverse agricultural 

studies involving study of cropping patterns, soil mapping, grassland monitoring, and more. 

Further, the techniques used to extract information from the EO data for the parcels depend 

on the type of EO data used, such as multispectral or Synthetic Aperture Radar (SAR), etc; and 

also, on the specific use case. Tamm et al. (2016) use SAR images from Sentinel-1 to correlate 

the interferometric coherence in image pairs to mowing events in grassland parcels. Hartmann 

et al. (2023) also look at mowing events in grasslands. They demonstrate the use of Sentinel-

2 multispectral imagery to differentiate between the temporal heterogeneity of mowing events 

of hay milk grasslands to that of conventionally managed grasslands in Austria. On the other 

https://link.springer.com/book/10.1007/978-3-540-77058-9
https://link.springer.com/book/10.1007/978-3-540-77058-9
https://doi.org/10.20870/oeno-one.2020.54.1.2557
https://doi.org/10.3390/app10103612
https://doi.org/10.3390/f14010041
https://doi.org/10.20870/oeno-one.2020.54.1.2557
https://doi.org/10.3390/app10103612
https://doi.org/10.3390/rs8100802
https://doi.org/10.1016/j.atech.2022.100157
https://doi.org/10.1016/j.atech.2022.100157
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hand, Reinermann et al. (2022) combines Sentinel-1 and Sentinel-2 time series for detection 

of grassland mowing events in Germany. Dusseux et al. (2014) also combine optical images 

from SPOT-5 and Landsat sensors, and SAR images from RADARSAT-2 to train a support 

vector machine (SVM) to classify grassland parcels and crop parcels in France. Due to 

difference in spatial resolution of the optical and SAR images, they aggregate the 15 types of 

variables calculated at the pixel level from both sources, to the parcel or field level using the 

mean statistic. Such studies provide valuable information for monitoring of agricultural land 

parcels that can be useful for implementing crop policies. In fact, ESA launched the Sentinels 

for Common Agricultural Policy - Sen4CAP as a project dedicated to provide ‘validated 

algorithms, products, workflows and best practices’ derived from Sentinel missions that are 

relevant for the implementation of the CAP (Sen4CAP, n.d.). The algorithms are generated to 

check farmers’ compliance with sustainable farming practices on their farming parcels against 

specific subsidy scheme applications. 

This study couldn’t find literature on use of open and free satellite datasets to study temporal 

changes in urban real-estate property parcels such as residential or industrial. Urban 

applications that happen to use parcel-based approaches, generally use high resolution or very 

high-resolution imagery obtained from privately deployed UAVs or commercial satellite 

missions (Zhou & Troy, 2007; Zhang et al., 2017) and not free and open EO data. This is also 

the case with studies analysing change in parcels over time (Bin et al., 2013). This striking 

discrepancy in exploration of parcel-based approaches for agricultural applications vis-à-vis 

built real-estate applications, using open and free satellite data, can be majorly due to the 

difference in the parcel sizes between agricultural applications and real-estate applications. In 

the latter, parcel sizes are much smaller causing a highly pronounced mixed pixel problem.  

1.3. Research questions 
In the context of parcel-based analysis for real-estate assessment and sustainable finance, this 

paper asks two main research questions. Can open and freely available Copernicus Sentinel-2 

data potentially be used for an insight into –  

1. the semantic history of a parcel?  

2. the intensity and extent of vegetation on the parcel? 

2. Materials & Methods 

2.1. Study Parcels  
I accessed the data on cadastre parcels from the open data portal – 

(https://data.bev.gv.at/geonetwork, accessed on 10/07/2023) maintained by the Federal 

Office of Metrology and Surveying of Austria (BEV). Digital Cadastre Map (DKM 

KAT_DKM_GST_epsg31287_20221001.gpkg) is the official spatial database of the cadastre 

parcels in Austria.  

I selected three arbitrary parcels from the dataset located in the city of Vienna for the analysis. 

The parcels were finalised upon identifying some kind of construction activity by visual 

inspection in the historical imagery from Google Earth Imagery. These are shown in Figure 2. 

New buildings were observed in all three parcels in 2020. For parcel A and B, the Google Earth 

Imagery reveals two important stages before the appearance of new buildings – clearing of 

land (2018) followed by the construction activity (2019). For parcel C, these two stages cannot 

be spotted due to lack of adequately frequent imagery before the appearance of the new 

building. 

https://doi.org/10.3390/rs14071647
https://doi.org/10.3390/rs6076163
http://esa-sen4cap.org/
https://doi.org/10.1080/01431160701469065
https://doi.org/10.1016/j.compenvurbsys.2017.03.001
https://doi.org/10.1109/JSTARS.2013.2291773
https://data.bev.gv.at/geonetwork
https://data.bev.gv.at/geoserver/www/data_bev_gv_at/kataster/gpkg/KAT_DKM_GST_epsg31287_20221001.gpkg
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Figure 2: Study Parcels. Data source: Digital Cadastre Map (DKM) Basemap: Google Earth Imagery 

The study parcels are of varying spatial extent and as a result, each of them subsumes a 

different number of Sentinel-2 pixels. Parcel A derives information from 32 pixels, parcel B 

from 21 pixels and parcel C from 4 pixels. 

2.2. Data Access 

2.2.1. Semantic EO data cube & Semantique 
In this study, I utilised data from the Sentinel-2 satellite mission of the European Copernicus 

Earth Observation Programme. The mission consists of two operational satellites, Sentinel-2A 

and Sentinel-2B. Together, they provide a revisit cycle of about 5 days at the equator (2-3 days 

at high latitudes with different viewing angles). The satellites carry a Multi Spectral 

Instrument (MSI) that captures reflectance values across 13 spectral bands at different 

resolutions. In this study, I use the Red, Blue, Green, Near Infrared (at 10m resolution) and 

Shortwave Infrared bands (at 20m resolution) (ESA, n.d.). 

I retrieved the Sentinel-2 data, semantic information and greenness-index layers used in this 

analysis from the spatiotemporal Austrian Sentinel-2 semantic EO data cube, also called as 

Sen2Cube.at (demo access). Sen2Cube.at offers semantic information, which is a categorical 

explanation of each pixel, as well as Sentinel-2, Level 1C image data, a brightness layer, a 

greenness-index layer, and semantic information (Augustin et al., 2019). The SIAM (Satellite 

Image Automated Mapper) software, which automatically constructs spectral categories from 

multispectral picture data calibrated to at least top-of-atmosphere (TOA) reflectance (Baraldi 

et al., 2010) is used to obtain the semantic information. The categorisation offered by SIAM is 

based on predefined rulesets encoded in a decision tree that takes the physical and spectral 

information as input and applies to each pixel. Figure 3 shows the legend for SIAM colour 

names grouped by related semantic associations for a granularity of 33 spectral categories. In 

the context of our application, the vegetation spectral categories can be viewed as varying 

intensities of vegetation. The other relevant colour categories are bare soil or built-up. 

Sen2Cube.at provides a graphical interface for allowing querying of the data at the parcel level. 

However, for more control over the workflow, better transferability and reproducibility, a 

programmatic access was desirable. This was overcome by Semantique python library. 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://demo.sen2cube.at/
https://doi.org/10.3390/data4030102
https://ieeexplore.ieee.org/abstract/document/5345833?casa_token=sxHD0yr443IAAAAA:kbMmXE4MVwfmCGagYPbLFP3ERhP6i8VyO62ySGiMpvLa9dZfazg6GzocACjkyZT7WMO9HhhrwBDF
https://ieeexplore.ieee.org/abstract/document/5345833?casa_token=sxHD0yr443IAAAAA:kbMmXE4MVwfmCGagYPbLFP3ERhP6i8VyO62ySGiMpvLa9dZfazg6GzocACjkyZT7WMO9HhhrwBDF
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Figure 3: Legend for SIAM colour names grouped by related semantic associations and represented by related 

colours for visualisation. Source: Sen2Cube.at, accessed 27/07/2023 

Semantique is a python package that allows for an ontology-based querying of the EO data 

cube (van der Meer et al., 2022). The ontology codifies representations of real-world entities. 

And through a mapping component constructed by the user (an EO expert) these 

representations are then mapped to data values in the data cube (Ibid.). This essentially cuts 

off the need for general users to directly interface with the data values. I created workflows as 

Jupyter Notebooks that are configured on the Sen2Cube.at server with all the necessary 

environment requirements including the Semantique library. 

2.2.2. Cloud and snow filters 
For each parcel, I generated cloud filter for each parcel using the semantic layer in the EO data 

cube. The semantic categories provided in the layer for each pixel produce adequate results 

for cloud cover estimation (Tiede et al., 2021). I used the semantic categories ‘smoke plume’ 

and ‘cloud’ in this study to create a cloud filter. For the generation of snow filter for each parcel, 

categories ‘snow’ and ‘snow shadow’ were used. For both filters, the threshold was set at 5%. 

This means that all the acquisition date timestamps (referred to as timestamps from here) 

where the cloud coverage is greater than 5% were removed from the analysis. Similarly for the 

snow coverage. Then, an intersection of the filters is applied to obtain data of timestamps of 

acceptable snow and cloud cover. The resultant set of timestamps are used in this study to 

filter the semantic parcel history and layers used in ‘green score’ calculation. 

 
Parcel 

 
Total 

scenes 
available 

 
Scenes with 

acceptable snow 
cover 

 
Scenes with 

acceptable cloud 
cover 

 
Intersection 
(Acceptable 

snow & cloud) 

 
Scenes lost 

Parcel A 1003 900 726 632 371 (~37%) 
Parcel B 1003 895 759 661 342 (~34%) 
Parcel C 1003 903 759 665 338 (~34%) 

Analysis time period: 2015-07-10 to 2021-04-30 

2.2.3. Vegetation mask 
In order to retrieve greenness-index information strictly from vegetated pixels in the parcel, 

or ‘intelligent’ greenness-index (Baraldi et al., 2010), I generated a vegetation mask for the 

parcels for each timestamp. A vegetation mask is useful because, greenness-index values can 

be generated for non-vegetation pixels as well, due to reasons such as spectral information 

from neighbouring pixels. In order to generate this mask, the semantic information layer is 

accessed and a Boolean array is returned for each timestamp with a True value for pixels where 

vegetation is observed and a False for vegetation absence.  

https://manual.sen2cube.at/enrichment.html
https://isprs-archives.copernicus.org/articles/XLVIII-4-W1-2022/503/2022/
https://isprs-archives.copernicus.org/articles/XLVIII-4-W1-2022/503/2022/
https://doi.org/10.1016/j.rse.2020.112163
https://doi.org/10.1109/TGRS.2009.2032457
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2.3. Semantic Parcel History 
In order to address the first research question of this study, I generated the semantic parcel 

history for the three study parcels. It gives an insight into the temporal occurrence of different 

spectral categories in the parcel. The hypothesis behind studying the semantic parcel history 

is that it can potentially hint at the major changes across spectral categories that the parcel 

may have undergone during the time period of interest. For example, an increase in the 

proportion of built surface extent within the parcel will result in a decrease in the vegetation 

extent observed in it, at least in the short term. If so, the semantic parcel history should be 

able to indicate such a phenomenon. For this, I queried the EO data cube for the colour types 

information for each timestamp in the time period. I then applied the snow and the cloud 

filters to retrieve scenes of timestamps with acceptable cloud and snow cover. Then the count 

of pixels within each parcel was retrieved for each spectral category and stored in a tabular 

format supported by Python’s data structures. Each row in the table corresponds to the 

semantic categories information of the parcel associated to one timestamp as seen in the 

Figure 5. The workflow for the semantic parcel history is shown in Figure 4. 

 

Figure 4: Workflow for generating semantic parcel history 

 

Figure 5: Sample table with results for semantic parcel history. Each value represents the count of pixels 

observed in a semantic category at a given acquisition date. Rows represent acquisition dates. Columns 

represents semantic categories observed in the parcel. 
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2.4. Proposed ‘Green Score’ 
In order to address the second research question asked by this paper, I propose a ‘green score’ 

which is conceived as a product of aggregated (mean, maximum and minimum) greenness-

index at the parcel level and the proportion of spatial extent of vegetation in the parcel. Baraldi 

et al. (2010) introduced the greenness-index and it uses the red, near infrared and shortwave 

infrared bands. They found that greenness-index correlates better with the biophysical 

variable, Leaf Area Index (LAI) compared to the Normalised Difference Vegetation Index 

(NDVI). The proportion of vegetation extent is derived based on the semantic information 

available for each pixel from the data cube.  

The rationale behind defining the score is that, neither greenness-index nor proportion of area 

under vegetation alone comprehensively defines the nature of vegetation observed within the 

parcel. To unpack this further, a relatively high aggregated greenness-index value of a parcel 

doesn’t necessarily mean that a considerable part of the parcel is covered with intense 

vegetation. The high greenness value could be resulting from a very few pixels in the parcel 

with intense vegetation and it doesn’t reveal much about the spatial extent of such high 

intensity vegetation in the parcel. Similarly, proportion of vegetation in the parcel only gives a 

measure of the extent of vegetation and doesn’t reveal anything about the quality or intensity 

of such vegetation. Combining these two measures into a product gives a more comprehensive 

insight into the vegetation in the parcel. Further, the timeseries curve of such a product is more 

representative of the combined temporal changes taking place in the spatial extent and 

intensity of vegetation on the parcel on ground. 

In order to calculate the proposed green score, I queried the data cube for greenness-index 

layer and for presence of vegetation in the parcel. I used the latter to create a vegetation mask 

and applied it on the greenness-index layer. Snow and cloud filters generated for the parcel 

were also applied. Then, for each parcel, the product of the aggregated greenness index and 

percentage of area under vegetation was calculated. The results were stored in a table such 

that each row corresponds to the green score information of the parcel associated to one 

timestamp as seen in Figure 7. The workflow for the green score profile of a parcel is shown in 

Figure 6. 

https://doi.org/10.1109/TGRS.2009.2032457
https://doi.org/10.1109/TGRS.2009.2032457
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Figure 6: Workflow for generating green score profile 

 

Figure 7: Sample table with results for green score profile of a parcel. 
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3. Results 

3.1. Semantic Parcel History 
Construction activity over previously vegetated land causes a loss in vegetation. Consider 

Parcel A and the corresponding timeseries in Figure 9. As expected, we observe a drop in the 

number of pixels of vegetation semantic categories (labelled from 1 to 9) from 2019 onwards. 

This is accompanied by an increase in the number of pixels of weak rangeland/built/barren 

semantic categories. In the year 2020, the building construction appears to be complete with 

a faint regrowth of some vegetation. This is reflected in the timeseries with a rise in vegetation 

category pixels with a continued large number of pixels under rangeland /barren/built 

categories. Figure 10 shows the timeseries of grouped categories based on their semantic 

association resulting in two broad groups green (SIAM categories 1 to 9) and barren/built-up 

(SIAM categories 10 to 20). Other SIAM categories (SIAM categories >20) are ignored from 

the timeseries analysis to limit the scope and keep the analysis relevant for construction 

activity and resultant changes in vegetation in the parcel. However, other categories can also 

be studied within the parcel through this technique, say, loss of any previously present water 

bodies in the parcel. 

Parcel B exhibits a similar trend, wherein, the number of vegetation pixels drop and that of 

barren/built pixels rise at the start of clearing of land (2018) through the construction period 

(2019) as seen in Figures 12 & 13. It is pertinent to note that throughout the timeseries, the 

canopy of a neighbouring tree is observed to be covering a portion of the parcel. Hence, the 

canopy could be contributing to the count of vegetation pixels observed in the parcel since the 

neighbourhood is not cleared during the construction activity. The analysis of the effect on the 

parcel due its neighbourhood features is not within the scope of this study, however, crucial 

for decision-making.  

The smallest parcel of the three, parcel C spans across only four Sentinel-2 pixels. This causes 

no visible difference to the count of pixels under vegetation and built/barren due to the 

construction activity. Hence the timeseries charts in Figure 15 and Figure 16 do not reveal any 

major trends and do not lend themselves to a meaningful interpretation. 
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Charts: Semantic Parcel History 

Semantic parcel history for parcel A (32 Sentinel-2 pixels) 

 

Figure 8: Temporal high-resolution images for parcel A obtained from Google Earth Imagery 

 

Figure 9: Timeseries curves of count of pixels for semantic categories (SIAM 1 to 20) for parcel A as a monthly 

mean aggregate 

 

Figure 10: Timeseries curves of count of pixels for semantic groups, vegetation (SIAM 1 to 9) and barren/built 

(SIAM 10 to 20), for parcel A as a monthly mean aggregate 
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Semantic parcel history for parcel B (21 Sentinel-2 pixels) 

 

Figure 11: Temporal high-resolution images for parcel B obtained from Google Earth Imagery 

 

Figure 12: Timeseries curves of count of pixels for semantic categories (SIAM 1 to 20) for parcel B as a monthly 

mean aggregate

 

Figure 13: Timeseries curves of count of pixels for semantic groups, vegetation (SIAM 1 to 9) and barren/built 

(SIAM 10 to 20), for parcel B as a monthly mean aggregate 
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Semantic parcel history for parcel C (4 Sentinel-2 pixels) 

 

Figure 14: Temporal high-resolution images for parcel C obtained from Google Earth Imagery 

 

Figure 15: Timeseries curves of count of pixels for semantic categories (SIAM 1 to 20) for parcel C as a monthly 

mean aggregate 

 

Figure 16: Timeseries curves of count of pixels for semantic groups, vegetation (SIAM 1 to 9) and barren/built 

(SIAM 10 to 20), for parcel C as a monthly mean aggregate 
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3.2. Green Score 
We expect green score timeseries to be representative of the changes in green cover both in 

terms of its intensity and spatial extent. The timeseries charts of parcels A (Figure 19) and B 

(Figure 22) for the green score show a combined view of the trends from timeseries of both the 

percentage area of vegetation and greenness index (Figures 18 and 21 for parcels A and B 

respectively). As expected, there is a sudden drop in green score at the start of the construction 

activity. Then, there is a gradual rise in the green score after the construction activity is 

completed indicating regrowing vegetation. The green score profile of parcel C (Figure 25) 

doesn’t reveal much information because of the challenges mentioned earlier. The small size 

of the parcel (four Sentinel-2 pixels), makes it difficult for the parcel analysis to provide any 

meaningful results. 

(Charts follow from next page)  
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Charts: Derived Green Score 

Green score profile of parcel A (32 Sentinel-2 pixels) 

 

Figure 17: Temporal high-resolution images for parcel A obtained from Google Earth Imagery 

  
Figure 18: Timeseries curves of greenness-index (left) and % of area under vegetation (right) for parcel A as 

monthly aggregates (maximum) 

 

Figure 19: Timeseries curve of the proposed green score for parcel A as a monthly aggregate (maximum) 
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Green score profile of parcel B (21 Sentinel-2 pixels) 

 

Figure 20: Temporal high-resolution images for parcel B obtained from Google Earth Imagery 

  
Figure 21: Timeseries curves of greenness-index (left) and % of area under vegetation (right) for parcel B as 

monthly aggregates (maximum) 

 

Figure 22: Timeseries curve of the proposed green score for parcel B as a monthly aggregate (maximum) 
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Green score profile of parcel C (4 Sentinel-2 pixels) 

 

Figure 23: Temporal high-resolution images for parcel C obtained from Google Earth Imagery 

  
Figure 24: Timeseries curves of greenness-index (left) and % of area under vegetation (right) for parcel C as 

monthly aggregates (maximum) 

 

Figure 25: Timeseries curve of the proposed green score for parcel C as a monthly aggregate (maximum) 
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4. Discussion & Conclusions 
This study shows that the freely available Sentinel-2 imagery can be used to not only retrieve 

latest information about a real-estate parcel but also in ‘looking back into its past’ and 

understanding the changes that took place on the parcel over time. This can be a critical 

resource in producing environmentally-aware credit ratings of properties. For example, a 

parcel that is built in a previously fully vegetated parcel is perhaps less environmentally 

friendly vis-à-vis a parcel that is redeveloped (i.e., previously non-vegetated). In such 

scenarios, generating a semantic parcel history can be a useful input to the decision-making. 

Further, such a history can also help flag other kinds of changes over the parcel such as a water 

body being converted into built-up.  

The green score, proposed as a multiplicative product of greenness-index aggregated at the 

parcel level and % area of parcel under vegetation, has the potential to provide a 

comprehensive picture at the vegetation in a parcel. It can allow for comparisons among 

different parcels in terms of their relative vegetation. In buildings where some regrowth of 

vegetation is observed post construction, such as through greening of the roofs, it allows us to 

hypothesize the following: Even when there is some recovery of vegetation on the parcel post 

the construction, the new vegetation can be of a decreased intensity or spatial extent or both 

compared to the pre-construction vegetation. Future studies can test this hypothesis and 

explore the potential of this new indicator at setting post-construction greening targets for 

property owners relative to the pre-construction state of vegetation on the parcel.  

I found availability of limited literature on use of Sentinel-2 data and parcel-based analysis for 

real-estate assessment as a major challenge in carrying out this study. This calls for a need to 

explore the Sentinel-2 data for applications in the real-estate domain, alongside usage of high 

and very high-resolution imagery. Further, for each parcel, cloud and snow cover together 

resulted in a loss of about 34%-37% scenes from analysis. This can be a challenge when 

imagery is not available for a prolonged period causing a challenge to decision-making. 

Finally, the adequacy of the spatial resolution of Sentinel-2 imagery for the analysis of real-

estate property parcels is an important aspect to consider. This study indicates that the 

interpretation of temporal patterns might be more relevant for larger property parcels 

compared to smaller ones. Hence, while workflows built on top of Sentinel-2 data can be 

fruitful, they cannot fully replace the conventional monitoring systems such as site visits, and 

hence need to be meaningfully integrated with them. Further, they can also be integrated with 

monitoring systems built upon UAV-based high-resolution imagery.  

The present study is only exploratory and indicative. Hence, the limitations of this study 

include lack of statistical analysis on a significant number of parcels. Future studies can look 

at extending this analysis to several parcels at neighbourhood or city level. Further, issues 

arising out of the mixed pixel problem and potential pathways to handle it, need to be explored 

more in the context of real-estate parcels. Finally, studies focused on setting a minimum 

threshold for the size of a real-estate parcel that can produce statistically significant results for 

the analyses workflows presented in this study, would also be valuable. 
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