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Abstract
The incorporation of prior knowledge into deep learning models is expanding across various

fields. In remote sensing, this often involves using spectral indices and incorporating physical
principles into the models’ loss functions. Yet, the approach of embedding domain-specific se-
mantic information—detailed descriptions at the pixel level in satellite images—in deep learn-
ing settings has not been explored. This study seeks to establish foundational benchmarks for
integrating such semantically enriched data, investigating three different approaches. Addition-
ally, the study examines the potential of using semantically enriched data in the pretraining
phase, which is particularly beneficial when labelled data is scarce. The findings indicate that
the most detailed semantic data achieves the best performance in a fully supervised learning
setup. Furthermore, models combining semantic and multispectral data as inputs surpass all
others in supervised and pretraining settings. However, due to design limitations, such as the
minimal use of unlabeled data for pretraining, the benefits of integrating semantic data in pre-
training tasks are not definitively proven. This is among the initial studies in this area, so
employing simple network architectures and training strategies was necessary. Considering the
ongoing advancements in self and semi-supervised learning, future research is encouraged to
utilise more sophisticated pretraining approaches.
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1 Introduction

1.1 Leveraging domain knowledge in deep learning

There is an ongoing debate about how much, or even, whether the integration of prior knowl-
edge is desirable for deep learning models (DLs) [31]. The reduced use of pre-existing knowl-
edge is often intentional in training deep learning models, as they aim to gain all the necessary 
insights for the problem by comprehending the connections between inputs and outputs [31]. 
However, exploring techniques incorporating domain-specific knowledge has seen an upward 
trend and has proven useful when applying DL methods. Studies across domains make at least 
two main arguments that merit the integration of domain knowledge in deep learning models —
first, inadequate labelled data available in the respective domains to train the data-hungry DLs, 
and second, the need for increased algorithmic explainability of neural networks. [33] propose 
domain adaptive neural networks highlighting the challenges encountered in acquiring repre-
sentative training data for modelling physical, chemical or biological processes. For instance, 
it is unsafe to collect data at sensitive infrastructure such as energy facilities; when possible, it 
is either prohibitively expensive or of poor quality. In the domain of medical diagnostics, [53] 
highlight similar challenges to data acquisition for deep learning models — the high cost and 
labour-intensive nature of collecting medical images, the limited annotation of these images 
requiring expertise from experienced doctors, and the difficulty in obtaining balanced datasets 
due to the rarity of some diseases. [23] and [58], argue for integrating prior finance knowl-
edge in DLs to increase the explainability of the models and better alignment with advanced 
finance theories, for their uptake in a sensitive sector like finance. Such incorporation of prior 
knowledge in deep neural networks has taken at least three forms – feature engineering of raw 
data before inputting into the model, embedding the domain laws into the loss function or 
placing domain-specific constraints, and finally, through architectural design choices tailored 
using domain knowledge [10].

The domain of remote sensing too, is no stranger to the DL story described above— ac-
quiring large annotated datasets labelled at pixel-level and improving the explainability of DL 
‘black box’ remain critical challenges [54]. Hence, continuous innovation is needed in both 
techniques and concepts. Self-supervised learning has shown promise in tackling the first chal-
lenge by reducing the need for human annotation and enhancing model performance in low-data 
contexts [51]. Additionally, integrating domain knowledge, such as using spectral indices as in-
puts to neural networks [30], [25] and incorporating physical laws as constraints [54], helps 
address the latter challenge. To further these dual goals, the present study proposes an 
integration of semantically enriched satellite data in DL neural networks.

The semantic enrichment of satellite data involves translating raw data into meaningful sym-
bols that represent stable concepts. The semantic enrichment used in this study was created 
using the Satellite Image Automatic Mapper (SIAM) [5]. SIAM provides automatic and near 
real-time semantic enrichment of multi-spectral satellite imagery. It uses a knowledge-based 
decision tree that categorises reflectance values into a  predefined set of semi -symbolic spectral 
categories without requiring user-defined parameters. As a result, each pixel has a defined 
semantic meaning (e.g., dense vegetation or bare soil). Given the simplification of complex mul-

1



Chapter 1. Introduction

tispectral data offered by semantic enrichment and thereby noise reduction, it is well-
positioned to be leveraged in DL models.

This study chooses land cover classification as the task to investigate 
the model performance improvements upon incorporation of SIAM 
enrichment. Landcover classification is an important tool for understanding our 
environment and planning our land-based resources better. [54] in their comprehensive 
review of DL in environmental remote sensing highlight that despite the 
impressive results achieved in land cover classification using DL, the 
inadequacy of labelled datasets for this task limit the widespread application of 
DL for land cover mapping. Another reason making land cover classification a 
natural choice for preliminary studies, in in-troducing SIAM to DL, is the semantic 
proximity of well-defined high-level land cover classes to the semi-symbolic spectral 
categories produced by SIAM.

1.2 Research questions
This study reveals that while SIAM-based semantic enrichment of satellite 
data is common in deterministic remote sensing analyses, its effectiveness has 
not been systematically evaluated in deep learning applications, such as land 
cover classification. The study hypothesises that using SIAM-based semantic 
enrichment, which encapsulates extensive domain knowledge about the spectral 
behaviour of Earth’s surface, simplifies complex multispectral data and reduces 
noise. This is expected to guide the models based on physical knowledge, 
resulting in improved explainability of the results, quicker convergence and 
higher accuracy in deep learning tasks for land cover classification. Against this 
backdrop, the study poses an overarching research question – does the use of 
semantically enriched satellite data result in improved performance of deep learning 
models for a land cover classification task?

The research explores this question through two distinct investigative lines 
based on the supervision setup. The first line  examines the impact of using SIAM 
enrichment as raw input in a fully supervised task trained from scratch. This approach 
establishes a baseline for model comparison and identifies the most effective SIAM 
granularity. The second line considers the potential of SIAM enrichment in training 
pretext tasks, aiming to enhance current self-supervised approaches that rely heavily on 
noisy multispectral data. These approaches typically lack detailed spectral behaviour 
knowledge. Furthermore, SIAM semantic enrichment, applicable to any sensor 
data corrected to at least top-of-atmosphere reflectance levels, allows for 
automatically generating spectral category maps for each multispectral image 
patch used in supervised and self-supervised training. This capability significantly 
enhances the volume of task-agnostic pretraining data, enriching it with 
comprehensive domain knowledge essential for learning robust data representations.

Furthermore, SIAM semantic enrichment, applicable to any sensor data corrected to at 
least top-of-atmosphere reflectance levels, allows for automatically generating spectral 
category maps for each multispectral image patch used in supervised and self-supervised 
training. This capability significantly enhances the volume of task-agnostic pretraining data, 
enriching it with comprehensive domain knowledge essential for learning robust data 
representations.
2



1.2. Research Questions

* How do models trained with only SIAM data as input perform compared to those using
only multispectral data?

* Among the four levels of SIAM granularity, which one achieves the best performance?

* Does combining SIAM with multispectral data outperform using only multispectral data?

B) SIAM enrichment in a pretext task
This set of questions investigates whether SIAM enrichment enhances the supervision

quality in pretraining tasks, used alone or alongside a reconstruction task like in an 
autoencoder. 

* Does incorporating SIAM in a pretext task lead to better downstream task performance
than using image reconstruction alone?

* Does a multitask learning setup, involving both image reconstruction and predicting
SIAM labels, yield better results than using image reconstruction alone in the pretext
task?

This paper is structured as follows. The Introduction Chapter discusses the 
importance of leveraging domain knowledge in deep learning and outlines the research gaps 
and questions. The Literature Review synthesises existing studies that use semantic enrichment 
in remote sens-ing, supervised semantic segmentation for land cover classification, and self-
supervised learning for semantic segmentation. The Data Chapter describes the benchmark 
Semantic World dataset and the specific subset used for the study. The Methods Chapter 
details the integration of SIAM into neural networks, including training from scratch and 
pretraining for semantic segmentation. The Experimental Design outlines the cross-validation 
and ensembling techniques, losses and evaluation metrics, hardware specifications, and 
methodological simplifications. The Results Chapter presents the outcomes of 
hyperparameter tuning, the overall performance of the models, convergence analysis, the 
tradeoff between model performance and convergence, the dependence of each model on the 
amount of labelled data, class-wise performance comparison, and visual comparisons of 
segmentation maps. Finally, the Discussion and Conclusions Chapter analyses the findings 
and their implications. References and additional details are provided in the Appendix.

3
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multispectral data, improves performance on a test set compared to a baseline model that uses 
only multispectral data.



2 Literature Review
The literature review aims to comprehensively review the current state of research in to two 
key areas directly related to this study’s topic. The first s ection l ooks a t s tudies f rom t he re-
mote sensing domain that have employed semantic enrichment. The next section looks at some 
pretraining tasks designed to be used in downstream semantic segmentation. This review will 
contextualise the research gaps and questions addressed in this thesis.

2.1 Semantic enrichment in remote sensing

2.1.1 Use and representation of semantic information
Semantic enrichment of satellite data means enhancing image patches by adding context and 
meaning. This enrichment can be achieved through various methods. In remote sensing and 
image-related tasks that use deep learning, studies have explored techniques including 
multi-source data fusion [56] (also see [55]), its combination with multi-temporal data (see 
[13]), inte-grating deep features [17], [52], and fusion of data layers containing context-
specific descriptors [3] and [24].

This study is particularly interested in the last method—context-specific descriptors. Studies
have examined using such data input in its vector or object form. For example, a body of
literature from Volunteer Geographic Information (VGI) uses OSM data to provide contextual
information and enrich the input data’s semantics. OSM data contains semantically rich high-
level geographic information crowdsourced by volunteers. [57] use semantic elements from
OSM data as input to an Object-based CNN for urban scene understanding and achieve high
accuracies for complex urban scenes. Most studies that use semantically rich descriptive data
in a multi-class image or pixel form instead of object-based or vector form end up using it
to provide supervision. [26], show that using OSM data as labels for segmenting roads and
buildings can effectively reduce efforts and costs incurred in manual annotation for obtaining
ground truth. [19] developed a semi-automatic approach to create training data for land cover
classification of aerial imagery and elevation. They use OSM data to generate labels. Very few
studies explore using this data as pixel-level inputs rather than as labels.

A study of high relevance in this discussion is [3]. They propose using semantically rich
OSM data with remotely acquired optical data to build semantic maps. They study two methods
of representing the OSM data in the neural network. The first method represents the data as a
sparse tensor to encode the data discretely. Each channel in the tensor corresponds to a raster
class. The channel contains binary information indicating whether or not the respective class
is present in that pixel. The second method is a continuous representation called the signed
distance transform (SDT). In this representation as well, the channels of the tensor correspond
to the raster classes; however, each channel contains a distance transform associated with that
class such that the distance ‘d’ from the respective class is, d<0 appears if the pixel is inside
the class and d>0 if it is outside it. They explore two architectural variations for the fusion
technique based on the use case: one, a fusion that uses residual correction if the use case is
to detect the classes that can be directly inferred from OSM, such as roads or buildings, and
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2.1. Semantic Enrichment in Remote Sensing

two, FuseNet for use cases wherein the target classes can be indirectly inferred from OSM 
raster classes, such as settlement type based on the buildings. The binarised representation 
gives slightly better results than the signed distance transform, potentially due to much 
less diffused information than the distance transform. Another study that binarises OSM data is 
[22], wherein residential and industrial buildings and highways are binarised and stacked 
together before inputting into a multi-branch CNN that processes three data sources, PAN, 
multispectral, and OSM data parallelly to predict an urban land use class.

[24] also represent context-specific descriptive enrichment in pixel form. They utilise
Google Maps rasters as three-channel inputs within their framework of conditional GANs, 
proposing a ver-satile solution for image-to-image translation tasks. This approach 
facilitates transformations such as converting sketches into realistic photos, changing black-
and-white images to colour, and altering daytime scenes to nighttime. Although the paper 
does not focus extensively on the specifics of input data representation, its use of RGB 
channel-based input for conveying semantic information is relevant to this study.

2.1.2 SIAM and its use in deterministic studies

The Satellite Image Automatic Mapper (SIAM™), introduced by [5], autonomously generates 
semantic enrichments without requiring user-defined parameterisation or training data. 
Operating as an expert system, SIAM™ employs a per-pixel physical spectral model-based 
decision tree on images calibrated to at least top-of-atmosphere reflectance levels. This 
setup facili-tates automatic, near real-time multi-spectral discretisation utilising pre-existing 
knowledge. The tool’s patent review discusses the operational limitations of contemporary 
remote sensing image understanding systems, focusing on automation, efficiency, and 
robustness to parameter changes. Some examples of such systems include ATCOR [38], 
which is semi-automatic and requires user intervention and site-specific settings, and 
eCognition [14], which employs object-based image analysis concepts that currently lack 
methodological consensus. Against these limitations, it highlights the need for a fully 
automated, knowledge-driven, decision-tree-based tool.

[6], outline the interdisciplinary foundation of predetermined colour naming within cogni-
tive science, spanning from linguistics to computer vision. They also review existing 
research on using static colour names in multispectral (MS) imaging. They explain that when 
every pixel of a multispectral image is mapped to a colour space, partitioned as a set of 
mutually exclusive and collectively exhaustive hyper polyhedra (equivalent to a predefined-
and-pre agreed upon dictionary of colour names), then a semi-symbolic multi-level colour 
map is generated auto-matically. The authors also highlight how such an approach to the 
partitioning of a measure-ment space into hyperpolyhedra is synonymous with vector 
quantisation in inductive machine-learning-from-data; and also with the process of 
deductively transforming a numerical variable into fuzzy sets within a framework of logic. 
This study utilises the comprehensive Semantic World dataset, whose semantic layers are 
derived from the SIAM tool, as detailed in Chapter 3.

Key analyses performed using semantic enrichment generated from SIAM, so far, are 
pri-marily classical knowledge-based approaches. [44] used SIAM data to automatically 
pre-classify optical Earth Observation (EO) images into semantic information layers for 
surface water detection for flood assessment in Somalia using water-related SIAM spectral 
categories like ‘turbid-water like’, ‘deep-water like’, etc.

5



Chapter 2. Literature Review

[49] use SIAM spectral category-based cloud masks and compare them with cloud
metadata provided by ESA’s Sentinel-2 products to find that cirrus cloud cover is 
overestimated in regions with high altitudes. They argue for better algorithms to generate 
cloud-related metadata for satellite products that several users and applications use. [16] used 
SIAM’s spectral categories like ‘clouds’, ‘shadow area with vegetation’, and ‘thin clouds over 
vegetation’ to create multitemporal cloud filters over the grassland patches in the study area. 
The filters are used to select images for their study to monitor temporal mowing events over 
grasslands, which is highly relevant for preserving grassland biodiversity. [20] combine 
SIAM’s ‘water-like’ categories to create water masks to identify water bodies suitable for 
floating photovoltaics. The study develops an approach to a detailed water body stability 
and size analysis over time, providing valuable data for spatial planning and renewable energy 
projects.

2.2 Self-supervised pretraining for semantic segmentation
Pretraining tasks in deep learning involve neural networks that learn useful representations from 
input data, which can be categorised into supervised [1] or self-supervised learning (SSL) tasks 
([43], [32], [41]). In supervised pretraining, models initially train on established labelled 
datasets such as ImageNet [11], with downstream tasks—related to specific areas of user inter-
est—subsequently finetuned using weights from these pretrained networks, a process known as 
transfer learning. While such an approach is largely beneficial for downstream tasks, it might 
come with some limitations, primarily because the labels in the established datasets may not 
closely match the requirements of the downstream tasks, which can adversely affect the perfor-
mance [34]. In SSL approaches, models derive insights from vast amounts of unlabeled input 
data. These learning tasks are meticulously crafted to be either neutral or specifically aware of 
the downstream tasks. Compared to supervised methods starting from scratch, self-supervised 
approaches are particularly effective in contexts with scant labelled data.

The research on SSL techniques is swiftly evolving, offering a broader range of training 
designs than supervised methods. The remote sensing domain has also started to sharpen the 
focus on these approaches in light of the increasing amounts of remotely sensed data. Stud-
ies conducted by [50], [47], [7] and [51] have made significant contributions to this field by 
attempting to consolidate the use of SSLs in the Remote Sensing domain. [51] extensive re-
view of SSL approaches categorises self-supervised techniques into predictive, generative and 
contrastive methods within the remote sensing domain.

This section leverages the taxonomy presented in [51] Still, it limits its scope to generative 
and contrastive self-supervised techniques that are either designed for or tested on task for 
creating a segmented map, either through classical approaches after pretraining or finetuning 
with a supervised downstream task.

Self-supervised techniques vary widely. Among them, the methods that focus on capturing 
the lowest level of pixel detail are the generative methods that focus on ways of reconstructing 
the input. Among generative methods, Autoencoders [4] have been widely used for pretrain-
ing and learning representations from multispectral remote sensing data. They comprise an 
encoder-decoder architecture and the model is trained to learn the representation of inputs by 
reproducing it back. [42] demonstrate the use of Autoencoders in compressing high dimensional 
vegetation indices data and then use a Random Forest classifier for the classification of pixels 
to vegetation types.

6



2.2. Self-supervised pretraining for semantic segmentation

Another group of generative methods are Generative Adversarial Networks (GANs) [15] 
wherein two models are forced to compete against each other in the learning process. The 
comprising models are called generator and discriminator. While a generator accepts a random 
vector as input and learns to produce a fake output, the discriminator learns to decide whether 
the generated output is fake or not. In this manner, both models learn to optimise their losses 
and eventually, the generator learns to produce outputs that the generator cannot deem as 
fake. [43] deploy an adversarial training scheme in which a coach network and an 
inpainting network are pitted against each other. The coach network with is trained to predict 
increasingly difficult masks to crop out of input images, which then, are filled in by the 
inpainting network by reproducing the input. Another interesting contribution of this study is 
its proposal of getting rid of the fully connected bottleneck layer in the encoder-
decoder architecture in order to pre-serve the spatial structure of the image data, 
relevant for downstream segmentation tasks. They highlight an important observation 
relevant to the present study, most of the time, pretraining tasks focus only on training the 
encoder, which is insufficient and inefficient when they’re used for a downstream task. 
Hence, they propose to train both encoder and decoder through the coach-inpainting 
training and find it to be effective on a downstream land cover segmentation task.

Contrastive methods are another fast-evolving set of self-supervised approaches. They fo-
cus on learning features by contrasting different views of the same input, for example spatially 
or spectrally augmented views of the same image. Negative sampling is one such approach 
but aims at forcing the model to learn not only from different views of the same image but 
different images altogether. The study by [32], used SimCLR [9], an innovation in negative 
sampling-based contrastive approaches, to enhance feature extraction for classifying land cover 
using SAR and multispectral imagery. Their self-supervised approach, called Spatial-Spectral 
Context Learning (SSCL), effectively learns features aligned with land cover classes without 
using labelled data. SSCL combines SimCLR for encoder training with a disturbance-resistant 
autoencoder for decoder training. During pretraining, the model contrasts feature vectors from 
two different types of data (e.g., SAR-optical, optical-optical, or SAR-SAR) to reduce con-
trastive loss. This method aims to harmonize different imaging modalities by aligning their 
feature vectors, thereby making the features modality-agnostic. The results show that this ap-
proach not only improves the integration of SAR and multispectral data but also surpasses fully 
supervised methods, pretraining with ImageNet, and other self-supervised techniques, offering 
a powerful solution for land cover classification t asks. Similarly, [41] use SimCLR alongside 
Swin Transformers to contrast optical and SAR Sentinel patches. They fine-tune the model on 
two separate tasks, a classification task and a segmentation t ask. They find that their approach 
outperforms a UNet trained from scratch for the segmentation task of land cover classification. 
They also note that the model performs better as a finetuning task downstream than with a 
frozen backbone, potentially because of the skip connections in the segmentation head that 
combines multiscale features. [29] propose a self-supervised contrastive learning method, 
Global Style Local Contrastive Learning Network (GLCNet), to enhance semantic 
segmentation of remote sensing images. By addressing the need for both global and local 
feature learning, they introduce a local matching contrastive loss, applied between patches 
within a single image, alongside the traditional global contrastive loss used between different 
images. This approach enhances the learning of both overall image-level features and also 
representations from local regions crucial for downstream semantic segmentation tasks.
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Chapter 2. Literature Review

Finally, clustering techniques are key data mining techniques that involve grouping 
a set of objects in a way that objects in the same group (called a cluster) are more 
similar to each other than to those in different groups. One of its implementations in deep 
learning is the deep clustering [8] approach that involves iteratively grouping features 
extracted from a neural network into clusters. Then, it uses the assignments from these 
clusters as pseudo-labels to train the network itself. By combining k-means clustering on 
the output of the feature by the convolutional layers of a deep network with standard 
backpropagation for learning, DeepCluster effectively leverages the representation power of 
deep neural networks without requiring labelled data. [40] deploy self-supervised deep 
clustering for the joint segmentation of multitemporal high-resolution images. This method 
involves clustering pixels based on their deep feature representations derived from a 
convolutional neural network, followed by an iterative refinement process to maintain spatial 
and temporal consistency across image sequences. This enables the automatic generation of 
temporally coherent semantic segmentation maps. The approach allows for consistent and 
accurate segmentation of land cover changes over time, making it highly applicable for 
environmental monitoring and change detection in remote sensing datasets.
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3 Data

3.1 Semantic World

The Semantic World dataset, developed by [Felix Kröber1], is an advanced benchmark for semi-
supervised semantic segmentation in remote sensing. It builds on the Dynamic World [46] 
dataset by employing the SIAM to enrich patches of scenes from Sentinel-2 imagery. SIAM’s 
rule-set-based decision trees translate reflectance values into semi-symbolic spectral categories, 
resulting in a dataset of 57.4K semantically enriched Sentinel-2 patches (510 x 510 pixels each), 
with 21.4K labelled, that is, containing Dynamic World class label per each pixel and 36.0K 
unlabelled patches. The division between training and test data, with 57.0K patches for training 
and 0.4K patches for testing, follows the original split of the Dynamic World dataset.

The dataset includes reflectance values from all 10m and 20m Sentinel-2 bands for L1C and 
L2A processing levels, with SIAM categorisation available in granularities of 18, 33, 48, and 
96 categories, along with the automated scene classification (SCL) layer. The dataset comprises 
patches spanning over 9K Sentinel-2 scenes across various global biomes, and years from 2017 
to 2019, offering a comprehensive spectral, spatial and temporal representation. 3.1 shows the 
spatial distribution of the images in the Semantic World dataset. This diversity enables robust 
training and benchmarking of deep learning models.

The dataset is structured into three size-based subsets. The smallest set contains about 72 
patches and is intended for prototyping tasks. The next bigger set contains about 6k patches 
(50 GB), and the largest set contains about 57k patches (450 GB). This study uses the second 
or medium-sized set for all the experiments.

3.2 Subset of the Semantic World

This study uses the L1C level patches from the medium-sized set of the Semantic World dataset. 
It comprises 3601 unlabelled patches and 2480 labelled patches. Of the labelled patches, 2102 
patches are reserved for training and 378 patches are set aside for inference and reporting of the 
model performance, it remains completely unseen by the models during their training phase. 
Figure 3.2 showcases the spectral categories found in SIAM-96 granularity.

3.2.1 Preprocessing

A standard normalisation technique of scaling the spectral band values to [0,1] is applied. For 
a band in each image, the pixel value at the 99th percentile is assigned a value of 1 and a pixel 
value at the 1st percentile is assigned a value of 0. The pixel values outside the mentioned 
percentile limits are clamped to 0 or 1. Wherever SIAM categories are passed as input to the 
networks as RGB bands (discussed in Chapter 4), all pixel values are reduced to [0,1] scale by 
dividing all the pixel values uniformly by a value of 255.
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Figure 3.1: Spatial distribution of the Semantic World data along with biome information.
Adapted from [Felix Kröber1]

(a) Raw multispectral bands, true color composite shown for ground scene
reference

(b) Scene Classification Layer, SIAM layers, and Dynamic World layers

Figure 3.2: A sample tile showcasing all the bands available in Semantic World dataset
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3.2. Subset of the Semantic World

Figure 3.3: Adapted from [6]. Pseudo colors of 92 spectral categories, categories are aggregated
along a row if they share the same parent class for better readability

Figure 3.4: Distribution of biomes across train, test and validation sets.

3.2.2 Train-Test-Val splits
The Semantic World dataset provides a test dataset for evaluating the final models. It remains
unseen during the training process. The study uses three stratified splits in both supervised
and pretraining scenarios (for reasons discussed in Chapter 5). A splitting based on the Biome
covariate of each image patch is used. This approach is chosen because biomes broadly reflect
the spectral diversity found in the patches, ensuring a consistent spectral distribution across the
pixels from these regions. Figure 3.4 illustrates the biome distribution for one stratified split
of the labeled patches alongside that of the patches in the test set. It is important to note the
difference in biome distributions between the test and validation patches, a factor that must be
considered during the interpretation of the model evaluation analysis. Similarly, the unlabelled
images are also split using this biome-based strategy. Each labelled split contained 1400 train
images and 700 validation images. Each unlabelled split contained 2400 train images and 1200
validation images.
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4 Methods

4.1 Introducing SIAM to neural networks

Applying the semantic information representations discussed by [3] to this study might lead to
issues due to the inherent difference between the characteristics of the OSM data used in [1]
and SIAM data. This is because OSM contains about five raster classes, such as buildings and
roads. In contrast, SIAM data includes 18 to 96 classes, depending on the chosen granularity.
Utilising binary or signed distance transform representations could result in either too sparse
or too diffuse inputs, respectively. The study ultimately adopted a pseudo-RGB representation
for each spectral category as the most suitable approach.This method aligns more closely with
[24] approach in terms of data structuring, although it differs in that the present study assigns a
discrete meaning to each RGB value, unlike the continuous raster image representations of map
views derived from GoogleMaps in [24].

The present study leverages the mapping described in the Chapter 2 provided by SIAM
for the Sentinel-2 multispectral polyhedra to one multispectral colour name as the basis for
transforming the semantic categories into a pseudo-RGB raster input for deep neural networks.
Each colour name represents a stable concept that is sensor-agnostic. Incidentally, in SIAM, the
predefined pseudo-colour of a spectral category mimics the natural colours of pixels belonging
to that spectral category, e.g. dark green for ‘dense vegetation’ maps to pseudo-RGB values of
(30, 250, 30) as per SIAM-48 granularity.

4.2 Training from scratch

In this group of experiments, the models follow a fully supervised training setup with an output
task to predict the Dynamic World label. First, a baseline model is trained with only ten bands
of Sentinel-2 multispectral data as input. Then, four different models are trained, each with
a different SIAM granularity data represented as the 3-band pseudo-RGB input, to predict the
Dynamic World label. Finally, after comparing the individual performances of models trained
with the four SIAM granularities, the best-performing SIAM granularity was chosen to train
a fifth model, with a combined input of multispectral and SIAM data. In this final model, 13
bands are passed as input in total; 10 Sentinel-2 multispectral bands and three pseudo-RGB
bands representing the chosen SIAM granularity. Figure 4.1 illustrates the different training
scenarios implemented in the study.

Architecture specifications. The study chooses a U-Net [39] architecture with a ResNet-50
[17] encoder to perform the semantic segmentation task. This configuration utilises a deep con-
volutional network renowned for its robust feature extraction capabilities, which are particularly
suitable for image segmentation tasks. The encoder consists of the ResNet-50 structure, starting
with an initial convolutional layer (7x7 convolutions, stride 2) followed by a max pooling layer
(3x3 pooling, stride 2). This setup reduces spatial dimensions while capturing essential fea-
tures. The ResNet-50 backbone includes four main stages, each composed of multiple residual
blocks that employ skip connections to facilitate the flow of gradients and prevent the vanishing
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gradient problem. These stages progressively double the number of filters from 64 in the initial
stage to 512 in the final stage.

The decoder in the U-Net architecture is specifically designed to reconstruct the segmenta-
tion map from the encoded features. It consists of four main blocks, each of which includes
transposed convolutions or upsampling operations followed by convolutional layers to refine
the features progressively. These operations are designed to gradually restore the spatial dimen-
sions of the output to match those of the original input. Skip connections from corresponding
encoder stages are integrated at each level of the decoder, merging features from the down-
sampled pathway with the upsampled outputs. This approach helps the network localize and
refine segmentation outputs effectively by leveraging spatial hierarchies maintained throughout
the encoding process. Overall, the network used in the study has about 33 million trainable
parameters. In the decoder, the combination of upsampling and feature refinement through
convolutional processing, coupled with the integration of skip connections, ensures precise pre-
diction of the Dynamic World label for each pixel in the segmentation map.

4.3 Pretraining
Pretraining strategies are devised to front-load the learning capabilities and generalisation for
the downstream tasks. The pretraining phase prepares the model architecture by using unla-
belled data to better handle the complexities of a downstream task with limited labelled data
before tackling it. This study uses ResNet-50 encoder-based UNet for pretraining tasks as well.
Figure 4.2 showcases the three pretraining scenarios tested in this study.

4.3.1 Single task learning as pretraining
Three pretraining tasks are designed. All tasks expect multispectral image patches as input.
The first pretraining task is designed as an autoencoder task where the model learns to repro-
duce all the ten multispectral bands in the input as a regression task. The regression task head
has a Sigmoid activation function after the final convolution layer. The model minimises the
Mean Squared Error Loss (Chapter 5) used as the reconstruction loss function during learning.
The reproduction of images forces the model to learn low-level pixel information the extracted
feature representation prepares the model for performing well on the downstream task.

The second pretraining task is designed to predict pixel-wise SIAM-96 spectral categories
as labels, as in a semantic segmentation task. Here, the segmentation task head outputs logits
corresponding to the 97 classes (including a no-data class). The design of this task aims to
utilise SIAM spectral categories to provide a knowledge-guided supervision signal for learn-
ing much higher-level features, compared to reconstruction-based pretraining, making the task
semantically closer to the downstream land cover class prediction task. The model optimises
on a standard segmentation loss function, the Dice Loss (Chapter 5). Finally, the third task is
devised as a multi-task learning model, where the model learns to both reproduce the input and
also, to output a segmentation map predicting SIAM categories for each pixel.

4.3.2 Multitask learning as pretraining
The relevance of both reconstruction and SIAM segmentation tasks to the downstream land
cover classification task is the driving motivation behind proposing a multitask learning strategy
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Chapter 4. Methods

Figure 4.1: Illustration of the different training scenarios for models trained from scratch em-
ployed by this study
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Figure 4.2: Illustration of the different training scenarios for pretraining tasks employed by this
study
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as a pretraining task. The network learns representations of the input multispectral data that are 
relevant to both tasks, which are in turn relevant to the downstream task; the reproduction of 
images forces the model to learn low-level pixel information while learning SIAM spectral 
categories offers a supervision signal for slightly higher-level image understanding making the 
task semantically closer to the downstream land cover class prediction task.

Architecture specifications. For the third pretraining strategy of multitask learning, both 
tasks share the same encoder-decoder architecture, however, the architecture splits at the very 
end with two task-specific h eads, a  r econstruction h ead a nd a  s egmentation h ead. Meaning 
they share the parameters along the architecture, except for the last separate convolution layer. 
The splitting of task-specific d ecoders, a  c ommon p ractice i n s upervised m ultitask learning, 
is avoided in this study so that the pretrained decoder can also be used by the downstream 
task. [43] warn against the popular approach of training only encoders or using an encoder 
pretrained on an encoder-focused task such as scene classification, for a downstream semantic 
segmentation task.

Task loss weighting. This study employs the multitask weighting approach developed 
by [27]. The approach leverages homoscedastic uncertainty to dynamically weigh the loss 
func-tions of different tasks in a multi-task learning setup. They discuss that homoscedastic 
uncer-tainty, a type of task-dependent uncertainty varies between tasks reflecting the inherent 
noise in each task. It doesn’t depend on the input data. The approach involves defining a 
multi-task likelihood, where each task’s loss is scaled by the inverse of its uncertainty, thus 
automatically adjusting the weight based on the task’s confidence. This results in more 
confident tasks to get assigned higher weights in the loss calculation. This method not only 
eliminates the need for manual tuning of task weights but also improves the overall 
performance by enabling the model to balance the learning of multiple tasks optimally. The 
authors demonstrate the efficacy of this approach in visual scene understanding, where a single 
model simultaneously performs seman-tic segmentation, instance segmentation, and depth 
regression, outperforming models trained separately on each task. For implementing the 
multitask learning proposed by [27] the weights are set up as trainable parameters along with 
the model’s architectural trainable parameters. They also advise on training the learnable 
parameters as log variances of each task, instead of variances themselves, for numerical 
stability.

4.3.3 Downstream training
For all three pretraining models, two variants of downstream training are implemented. After 
the pretraining task is completed, the weights from the encoder and decoder of the trained 
network are transferred to the network for the downstream task. In the first set-up, the encoder 
is frozen to be used as a feature extractor and the decoder is finetuned on the downstream task. 
In the second set-up, both the encoder and decoder are finetuned. The loss and evaluation 
metrics used in the downstream are same as those used in the models trained from scratch.
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5 Experimental Design

5.1 Cross-validation and ensembling

This study creates three stratified train-val splits, of both labelled and unlabelled datasets, as
described in Chapter 3. The three splits are employed in cross-validation to get a statistically
more robust estimate of the model generalisation than training a model using only a single
train-test split [36]. Briefly, a model is trained on two folds and the third fold is used as a
validation set. This process is repeated thrice wherein each fold acts as a validation set in each
run. A cross-validation score is obtained by averaging the validation score from individual runs.
This score is used in the tuning of hyperparameters. This study’s cross-validation approach of
training a model plays two additional roles as described below.

For fully supervised and downstream tasks, the three models validated against the three
folds are used in an ensemble learning approach by performing model averaging at the time of
inference on the test set. Such an approach captures the model uncertainty better and increases
the predictive performance on the test set ([48], [28]). For the models used as pretraining tasks,
the model that achieves the lowest minimum for the loss function, among the three models, is
chosen for transferring the weights to the downstream task.

5.2 Losses and evaluation metrics

All metrics throughout the experiments conducted in this study are aggregated at pixel-level.
In the supervised semantic segmentation task of predicting Dynamic World label, a standard
DiceLoss [45] is optimised. The primary evaluation metric is chosen to be Intersection Over
Union [37] or IoU. An auxiliary metric F1 score is also monitored. In the pretraining tasks,
the reconstruction task optimised Mean Squared Error Loss. R2 score is monitored for the
evaluation of the training process. The single task pretraining with SIAM spectral categories
as labels also optimises DiceLoss and monitors IoU. However, in the dual task pretraining, this
study uses [27]to weight losses of each task to form a combined loss which the model optimises.
In this loss, the regression loss used is typically Mean Squared Error and the segmentation loss
used is the Cross Entropy Loss. The mathematical equations for the several losses used in the
pretraining and supervised scenarios are shared in the Figures 4.2 and 4.1 depending on each
training setup.

5.3 Hardware and implementational specifications

All the experiments in this study were conducted on an Intel Xeon 6226R @ 2.90GHz CPU
attached to an NVIDIA RTX A6000 GPU node with 48 GB VRAM. All the models were built
using PyTorch [2] and Segmentation Models PyTorch [21] libraries. Scikit-learn [35] was also
used as an auxiliary library for tasks such as stratified splitting of the datasets. Matplotlib [18]
was used to plot all the charts presented in this study. The code for the implementation of all the
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models presented in this study can be found at– https://github.com/rajesvariparasa/
semantic-enrichment-for-semantic-image-segmentation

5.4 Methodological simplifications
Acknowledging the computational time and resource constraints, at least two conscious 
choices made by the study could have kept the models from achieving their optimal 
performance. Firstly, a limited number of hyperparameters were tuned and, were tuned 
manually. Secondly, no data augmentations were performed to artificially increase the 
volume of  the training data which could have improved the generalisability of the models.

On the tuning itself, three critical hyperparameters were chosen for tuning, namely, 
batch size, learning rate, and gamma, the factor by which the learning rate decays after each 
epoch for the ExponentialLR scheduler. On a related note, hyperparameters once tuned were 
kept constant across different inputs and training scenarios. This was mainly for the general 
comparability of model performances and more specifically, for convergence analysis 
(section 6.3) which neces-sitated some control over the speed of training across 
models. SIAM-18 granularity was chosen to perform hyperparameter tuning. The models were 
trained for 50 epochs and cross-validation scores for selecting the best model. The 
hyperparameters were tuned iteratively starting with batch size, followed by the initial 
learning rate and gamma. While tuning a hyperparameter, the other two were kept constant.
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6 Results
This chapter summarizes the results obtained from the model selection and evaluation exper-
iments, beginning with an analysis of hyperparameter tuning to identify optimal settings 
for training. The subsequent analysis compares and contrasts model performances with and 
with-out the inclusion of SIAM data in the training pipeline, covering scenarios of training 
from scratch and pretraining. The discussion includes a comprehensive review of overall 
model per-formance, an assessment of how quickly models converge to optimal performance, 
an examina-tion of the trade-offs between performance levels and convergence speed, a study 
on how model performance varies with the availability of labeled data, and a detailed 
evaluation on individual classes.

It is important to note that the error bars presented in most charts correspond to the validation 
sets and represent the standard deviation of the measures shown on the y-axis, derived from 
three stratified s  plits. The length of these error bars allows readers to infer the variability of 
the respective measure. While these error bars do not directly establish statistical significance, 
they provide a visual cue for assessing whether differences might be significant. For this r 
-eason, an analysis of performances on both the validation and test sets is included, ensuring
a thorough assessment of model robustness. Further, another note on reading the
charts provided in the chapter - the model names are intended to be intuitive, prefixes
either refer to the input to the model, or the type of pretraining used. For example,
’s2’ refers to models trained with Sentinel-2 multispectral data and ’single segsiam’
refers to the pretraining with single task in which models use SIAM categories as
labels. On the other hand, the suffixes refer to the type of the task itself. So, ’scratch’
refers to models trained from scratch, that is, without any pretraining, ’fe’ refers to the
downstream models in which the encoder from the pretraining task was frozen and the
decoder was finetuned. F inally, ’ft’ refers to downstream models which were fully
finetuned, that is, both encoder and decoder are finetuned.

Additional material is provided in the Appendix, including training curves of all the final 
models trained in this study, curves showing the evolution of weights for uncertainty-based 
task weighting in dual task learning, and segmented maps predicted by all models for visual 
comparison of performance.

6.1 Hyperparameter tuning
Figure 6.1 illustrates the model performances from various hyperparameter tuning tests con-
ducted on the validation set using a cross-validation approach. The results indicate that a batch 
size of 16 yields the highest IoU, as shown in Figure a. It is also important to note that a batch 
size of 4 exhibits the least variability in IoU. Regarding the initial learning rate, a setting of 
0.0001 not only provides the highest IoU but also maintains relatively low variability, as de-
tailed in Figure b. Additionally, the learning rate decay factor, gamma, set at 0.95, slightly 
improves the IoU compared to a setting of 0.92, as seen in Figure c; however, it also introduces 
greater variability. Analysis of the learning curves reveals that a gamma of 0.95 corresponds 
to a significant divergence between the training and validation curves, in dicating less stable 
training. In conclusion, the optimal combination of hyperparameters for training the models is
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Chapter 6. Results

Figure 6.1: The results from the hyperparameter tuning tests are presented. The error bars on 
the graph represent the standard deviation of performances across the three validation set splits.

determined to be a batch size of 16, an initial learning rate of 0.0001, and a gamma of 0.92. 
This combination has been selected as the best training setting based on the balance between 
performance and stability.

6.2 Overall performances

Figure 6.2 summarises the performances of all the models in terms of IoUs and F1 
scores. The model trained from scratch with a combined input of multispectral bands and 
SIAM-96 categories results in the highest IoU and F1 score. This is considerably higher than 
the baseline model trained only with multispectral data as input. Among the models trained 
from scratch, with only SIAM categories as input, the 96-class granularity performs the best. 
However, the 96-class granularity doesn’t outperform the baseline model with multispectral 
input. An inspection of the errobars on the mean performance on validation set, indicate that 
these observations might be statistically significant.

The performance of the model that combines multispectral and SIAM-96 inputs is closely 
followed by models where both the encoder and the decoder were fine-tuned for the downstream 
task. However, the slight differences observed between the baseline and the finetuned models 
or among the finetuned models, might not be significant considering the variabilities shown by 
the errorbars.

Noting the initial assessment of SIAM-96 and its superior performance compared to other 
granularities, it was considered for subsequent SIAM-based models including, the model with 
combined input and the pretraining tasks.

Two observations confirm our intuition that SIAM based enrichment is perhaps well-suited 
as a complementary information source to sharpen the supervision signal however, it is not a 
substitute for multispectral data in land cover classification tasks. These two observations in-
clude, the comparable performance of the higher SIAM granularities with the baseline, if not 
more; and, the superior performance obtained when combining multispectral data with SIAM 
enrichment. Further, it is contrary to our intuition that the pretrained models do not significantly 
outperform the baseline. While pretraining is expected to enable the learning of useful features 
from the input data, allowing downstream tasks to focus on learning task-specific features, this 
does not appear to be the case here. Another important observation is that the pretrained mod-
els are less effective when used as feature extractors, with the downstream task freezing the 
backbone and only fine-tuning the decoder. [41] note a  similar observation regarding the per-
formance of finetuned and frozen-backbone models. They pointed out that this could be 
because of the skip connections in the architecture used to merge characteristics from the 
encoder with the decoder at corresponding scales.
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Figure 6.2: Performances using, IoU and F1 score, of all models are summarised here. The 
errorbars indicate standard deviation obtained from the three val splits

Additionally, the difference in the performances of the model between validation and test 
sets can be attributed to the inherent differences among the aggregated spectral characteristics 
of the patches in these sets stemming from the difference in the distribution of biomes among 
the two sets (an observation previously noted in the Chapter 3.)

6.3 Convergence analysis
In this section, the results from the convergence analysis are presented. The criterion for 
convergence was set as the epoch at which the model first reaches 98% of its peak performance 
(given by IoU). The GPU time to complete training until after this epoch was considered the 
time to reach convergence. The convergence time is calculated as a multiplicative product of 
the average time taken per epoch and the number of epochs taken to reach convergence.

Figure 6.3 summarises the results from the convergence analysis. The low variability ex-
pressed by the error bars for convergence time indicate that the time for convergence might 
be a more robust criteria for most of the experiments performed in this analysis for comparing 
convergence, than the epochs taken to converge. It is observed that the combined input model 
trained from scratch takes the highest number of epochs and the longest to converge. Almost all 
SIAM granularities converge quickly, this is most distinctively seen with the SIAM granularities 
18 and 48. They take about the same number of epochs as the baseline to converge, however, 
they take far less computational time to reach this convergence. SIAM-based pretraining tasks, 
single or dual, result in faster convergence compared to the reconstruction tasks, both in terms of 
epochs and time taken. This behaviour is observed in both the variants of downstream training 
settings, frozen encoder and complete finetuning. F inally, i t can be observed that f rozen en-
coder pretraining tasks converge much faster compared to their finetuning counterparts, while 
the latter converge around the same time as the baseline.

21



Chapter 6. Results

Figure 6.3: Results from the convergence analysis performed for all the models. (a) shows the 
epoch at which the model reached 98% of peak performance (b) time taken to train until then. 
The errobars indicate standard deviation obtained from the val splits.

Among the models trained from scratch, it was anticipated that the combined data would 
require fewer epochs to converge compared to using only multispectral input. This expectation 
arises because SIAM likely simplifies the prediction of certain land cover categories, while the 
multispectral input allows the model to to learn finer d etails. However, this wasn’t observed in 
the results. Although, the long time and large number of epochs taken for the combined input 
to converge could also potentially be an outcome of the increased data dimensionality to 13 
channels from its individual components with 3 or 10 bands. The same logic explains the fast 
convergence of all of the SIAM granularities compared to the high dimensional multispectral 
baseline.

Among the pretrained models, while it was expected that downstream tasks with frozen 
encoder would reach their peak performance fast in lieu of their least number of trainable pa-
rameters, it wasn’t expected that the fully finetuned models would take about the same time or 
epochs as the baseline model to converge. This is because, the pretraining is used for initiliazing 
the downstream task after the architecture has learnt some useful features from the input unla-
belled data, so it was supposed that the downstream task would take much less time to undergo 
task-specific finetuning.

6.4 The tradeoff: IoU vs convergence

Figure 6.4 summarises the combines results from the previous two sections. It is clear that 
while the combined input model, trained from scratch, yields the best performance, it also takes 
the longest to reach its peak performance. And while fully finetuned models perform slightly 
better compared to the baseline, they take about the same time to converge as the latter. All the 
other models, while they take much less time to converge, are inferior to the baseline in terms 
of performance. An examination of the errorbars indicate that these observations are likely to 
be statistically significant.

A combined reading of model performance and convergence analyses is necessary for bet-
ter discussing the gains from the individual models, over the baseline. Such information has 
implications for tradeoffs to be considered in implementational settings.
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Figure 6.4: Illustration of the tradeoff between model performance and convergence speed. 
Errorbars indicate standard deviation obtained from the three splits

6.5 Dependence on labelled data

Analysing the dependence on the available labelled data is critical to understanding the model 
performance in low labelled data contexts. Figure 6.5 summarises the results obtained from 
training these models using 10%, 25%, 50% and 100% of the labelled data within each stratified 
split. It is observed that the model trained from scratch with the combined input of multispectral 
and SIAM-96 data outperforms all the models, including pretrained ones, across volumes of 
available labelled data. Followed by, the performance of the dual task, and then other pretraining 
tasks. Finally, the model with multispectral input, trained from scratch performs poorly across 
volumes of labelled data except for the least amount of labelled data (10%), wherein pretraining 
based on SIAM alone performs the worst. However, this set of observations are less and less 
likely to be statistically significant in experiments performed with dereasing amounts of labelled 
data.

This goes to show that combining multispectral input with SIAM data, more specifically 
SIAM-96 granularity data, might tremendously improve the generalisability and the perfor-
mance of deep learning models for land cover classification.

6.6 Class-wise comparison

Figure 6.6 showcases the class-wise performances of each of the models. It shows that the 
model trained from scratch with the combined input of multispectral data and SIAM-96, per-
forms the best across most of the land cover classes except for snow and cloud. Here, almost 
all models trained on SIAM input alone perform the best. However, when combined with 
multispectral data, the performance falls down on these land cover classes, as shown by the 
combination input model. Another observation is that SIAM-based pretrained models outper-
form the baseline model for most land cover classes. This observation is more evident in some 
classes (water, cloud, bare ground) than others (scrub, crop, tree).
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Figure 6.5: Results comparing model performances based on the amount of labelled data used
for training.

The visibly better performance of all SIAM granularities on snow and cloud is potentially
because all of them have designated spectral categories describing clouds and snow. Hence,
this makes it easier for the model to learn to predict the respective categories from the target
Dynamic World classes. However, when combined with multispectral data, as in the model
trained with combined input, some noise could be introduced, making it difficult to predict
these classes.

Figure 6.6: Illustration of class-wise performance of all the models.
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7 Discussion and Conclusions
This study demonstrates the incorporation of SIAM semantic enrichment in deep learning sce-
narios for the semantic segmentation task of land cover classification. The results of this study
reveal the impact of including SIAM data in the training pipeline for land cover classification
models. Models trained from scratch with a combination of multispectral bands and SIAM-96
categories achieved the highest IoU and F1 scores, outperforming the baseline model trained
solely on multispectral data. This indicates that SIAM data significantly enriches the model’s
learning process, enhancing its predictive capabilities. The convergence analysis showed that
although the combined input model required the longest time to converge, SIAM granularities
(particularly 18 and 48) converged quickly and efficiently, suggesting their potential for rapid
model training.

A notable trade-off was observed between performance and convergence time. The highest-
performing model, despite taking the longest to reach peak performance, showcased the ad-
vantages of integrating multispectral and SIAM data. This trade-off is critical for practical
applications where computational resources and time are constrained. Furthermore, the model
trained with combined multispectral and SIAM-96 data consistently outperformed others across
varying amounts of labeled data, demonstrating its robustness and generalisability. This robust-
ness was particularly evident in low labeled data scenarios, where the combined input model
maintained superior performance, while models based solely on SIAM data showed poorer re-
sults. Class-wise performance analysis revealed that the combined input model excelled across
most land cover classes, except for snow and cloud, where models trained solely on SIAM in-
put performed better, which can be explained by the designated spectral categories for snow and
cloud. However, when combined with multispectral data, a fall in performance was observed
on these classes hinting at potential noise introduced by the multispectral data.

Pretrained models exhibited interesting behaviors that merit further exploration. While pre-
trained models were expected to significantly outperform the baseline by leveraging learned
features from the input data, this was not always observed. In particular, pretrained models
with frozen encoders converged faster due to the reduced number of trainable parameters, yet
they did not significantly surpass the performance of fully finetuned models or even the base-
line. This suggests that pretraining may not always transfer useful features effectively for down-
stream tasks in land cover classification. However, it needs to be highlighted that this study used
limited data for the pretraining tasks and a fairly simple pretraining design. In context of ad-
vanced self-supervised pretraining strategies being extensively researched, some of which were
reviewed in this study, it is recommended that future research should delve deeper into optimiz-
ing pretraining techniques, perhaps by experimenting with different architectures, pretraining
tasks, and data augmentation strategies. Additionally, exploring the potential of SIAM data in
other remote sensing applications and investigating how different types of auxiliary data could
further enhance model performance will be crucial. Such efforts could lead to more robust, gen-
eralisable models that balance performance, convergence speed, and computational efficiency
across various contexts and applications.
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Appendix-I
This Appendix showcases predicted segmentation maps by all the models compared in this
study for visual comparison of their performances. (charts from the following page)

31



BIBLIOGRAPHY

Figure 7.1: Predicted maps by models on sample patch 1

Figure 7.2: Predicted maps by models on sample patch 2
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Figure 7.3: Predicted maps by models on sample patch 3

Figure 7.4: Predicted maps by models on sample patch 4
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Figure 7.5: Predicted maps by models on sample patch 5
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Appendix - II

This Appendix contains the loss curves of all the models trained in this study. These curves
serve as a diagnostic tool to monitor the training behaviour of the models (charts from the
following page).
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Figure 7.6: Training curves of the model trained from scratch with multi-
spectral input

Figure 7.7: Training curves of the model trained from scratch with SIAM-18
input

Figure 7.8: Training curves of the model trained from scratch with SIAM-33
input

Figure 7.9: Training curves of the model trained from scratch with SIAM-48
input
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Figure 7.10: Training curves of the model trained from scratch with SIAM-96 input

Figure 7.11: Training curves of the model trained from scratch with combined input of multi-
spectral and SIAM-96 data

Figure 7.12: Training curves of the downstream task finetuned after reconstruction based pre-
training

Figure 7.13: Training curves of the downstream task finetuned after SIAM-96 based pretraining
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Figure 7.14: Training curves of the downstream task finetuned after dual task pretraining

Figure 7.15: Training curves of the reconstruction based pretraining

Figure 7.16: Training curves of the SIAM-96 based pretraining
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Figure 7.17: Training curves of the dual task pretraining, one task reconstructs output and the
other predicts a segmented map for SIAM categories

Figure 7.18: Evolution of loss weights for each task in dual task learning
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