Spatial Databases | Final Project
Database Backend for a WebGIS
29th March 2023

Rama Kamala Rajeswari, PARASA

o ek T
r' (
'55“ 2 T
I,

I

Table of Contents

Introduction
Modelling entities and relationships
Identifying entities
Building relationships
Data tables
Usage of the database
Requirements and Scenarios
Making queries accessible and efficient
Indexes
Views
References

o NN

12
12
14
14
14
15

Introduction

Visakha Utsav is an annual festival hosted by the coastal city of Visakhapatnam, India. It is
held in the month of December and is usually 3 days long. The event displays the best city
has to offer including folk music and dance and local delicacies. Several local and tribal
artisans set up stalls in the exhibition arena and their works are the charm of the festival. The
festival is filled with performances and games. If you happen to be in the city around that
time of the year, make sure to not miss it!

In this project, I build a database prototype that can potentially serve as a backend for the
WebGIS application built for visitors for easy information access. The app would enable the
visitors to easily navigate the festival arena and also to make the most of their visit.

ch; 4 users
. © stalls
grounds
- * facilities
; a_rE'I'baS
., m exhibition
exhibition food
. M play

Figure 1: Festival area and places of interest

Modelling entities and relationships

Identifying entities

To start with identifying the different entities, I look for information about the festival online
to get ideas.

ACTIVITIES
What You Should Not Miss At Visakha Utsav:

Games including beach soccer, volleyball, treasure hunt

Exhibition stalls with traditional handlooms and local art and crafts

Food courts serving local and world delicacies

Culture and entertainment shows with local music, dance and stand up comedy

Source: Ministry of Tourism, Govt of India

Based on the information online, and my personal experience of visiting the festival, I come
up with the following entities and their attributes:

1. Events (name, type, start and end times, venue name and location)

Facilities (name, type [- bathroom, helpdesk, etc], location)
Vendor (name, stall location)

Stall (name, type [-food, exhibition], assigned vendor)
Grounds (name, location)

Arenas (name, type [- exhibition, play, food], arena extent)
Users (first name, last name, live location, current time)

e Note: It is not necessary to maintain a user database in the scope of this
database, because the app will be used only for going over general information
about the festival. However, for demonstration of queries, this entity is
modelled. In actual implementation, live device location and time can be
used.

N ouhep

Building relationships

In the entities identified above, two prominent relationships are necessary to be considered.
One, the relationship between stalls and the vendors that will be set up there. A vendor can
set up at multiple stall locations throughout the exhibition arena. Two, the relationship
between events and the grounds where they will be held at. The grounds can host different
events at different times. However, one event is held at only one ground location. Based on
the entities identified, and the relationships defined, I build the entity-relationship diagram
using the entity-relationship tool of pgAdmin.

https://utsav.gov.in/view-event/visakha-utsav

@
4> public
4 facilities
id integer
f| geom geometry
name character varying(&0)

j type character varying(80)

L0
4> public
5 arenas
id integer
f| geom geometry

:l name character varying(&0)

10

&> public

5 grounds

| geom geometry

“1 name character varying(30)

id integer

®©
&> public

/5 events

type character varying
:| name character varying

9 gr_id integer

8

id integer

—1 start_t timestamp without ti
~ me zone

end_t timestamp without ti
me zone

|

®©
&> public

] users

id integer

first_nm character varying
last_nm character varying
location geometry

present_time timestamp wit
hout time zone

©

&> public

 vendors

[“ name character varying

id integer

©
&> public
H stalls
id integer
f geom geometry
[" type character varying(20)

42 vend_id integer

Figure 2: Design diagram of the proposed database prototype

Data tables

1. Arenas

Eg' K] integer s g:::rmnetr'_.' a 2::::|:ter varying (80) 4
1 2 | 0103000020010.- | exhibition
2 3 | 0103000020110 food
3 4 0103000020110.. play

Figure 3: Snapshot of festival arenas table

Figure 4: Map of the festival arenas

Facilities

id / geom a name / type p
[PE] integer geometry character varying (80) character varying {80)

1 1 0101000020170 Taoilets 1 toilet

2 2 0101000020110 Hepldesk 1 helpdesk

3 3 0107000020170 Taoilets 2 toilet

4 4 0101000020110. Drinking Water 1 free drinking water

5 5 0101000020110. Helpdesk 2 helpdesk

3] 6 0101000020110. Drinking Water 2 free drinking water

7 7 0101000020110.. Helpdesk 3 helpdesk

g 8 0107000020170. Toilets 3 toilet

9 9 0101000020110. Drinking Water 3 free drinking water

Figure 5: Snapshot of the facilities table
+) o
e . »
o .
<
© o H
© o0 L © 3 eDiinking Water 2
E | - | e
o° /s Helpdesk 2
p
% o h .
+]
Drinking Water 1

Joilets 1

Figure 6: Map of the facilities in the festival area

3. Grounds

| H geom g | Mame . P id . P
¥ | geometry character varying (80) [PE] inteqer

1 0107100002071 10F000039F ... Ground A 1
2 01010000201 10F0000862 .. Ground B 2
3 010710000201 10F0000T1 5., Ground G 3

Figure 7: Snapshot of the grounds table

Figure 8: Map of the grounds/venues for events

4. Stalls

L

o

id
[PK] integer

4

P2

P

“ g‘:g:etry a Tu:yhpae'ec:'.er varying (20)
0101000020110F0000CA6B1D6AG0B0E141213DF23IABFI03E.. exhibition
0101000020110F0000092C956964B0614109A55D9EDS203E41 exhibition
010710000201 10F0000E54F399C6BB0614130AT 1B9AFS903E4T exhibition
0107000020110F0000ES8C40686EB06T41CT1DCIFCETB913E.. exhibition
01070000201 T0F00000E30966773B0614120C41B2027913E47 exhibition

s

vend_id
integer

s

£

Figure 9: Snapshot of a sample of the stalls table

12

10
11

&

B exhibition

*h
*Ln

Figure 10: Map of the stalls in the festival

5. Users
id first_nm last_nm location present_time
[FE] integer s character varying 4 character varying 4 “ geometry] timestamp without time zone s
1 Dead Shapefilez 01010000207 10F000040E106906AB06T141C11192CF0491 3E41 2023-12-01 10:00:00
2 Ecstatic Elephant 0101000020110F000012A088E4AFB0614126AFBBBAASS23E4T 2023-12-02 15:00:00.736
3 | Brilliant Bumblebee

01071000020110F0000DF49CESAETBOGT41D91AFSTCC3933E41

2023-12-03 11:00:00.32

Figure 11: Snapshot of the users table

O i

*De::aid Shapefiles

‘Brilliant Bumblebee

Figure 12: Map of the user locations

10

6. Events

type _ name _ _gr_id / id) 7 start_t) e_nd_t) /
characier varying character varying integer [PK] integer timestamp without time zone timestamp without time zone
Game Beach Soccer 2 1 2023-12-01 08:00:00 2023-12-0 59:00
2 Game Volleyball 1 2 2023-12-01 14:00:00 2023-12-01 18:00:00
3 Show Folk Music 1 3 2023-12-02 09:00:00 2023-12-02 11:59:00
4 Show Folk Dance 3 4 2023-12-02 14:00:00 2023-12-02 17:00:00
3 Game Treasure Hunt 3 5

2023-12-03 10:00:00

~7. Vendors

Figure 13: Snapshot of the events table

]

L]

(8}

name . id

character varying u [PE] integer
vendor1 1
vendaor2 2
vendor3 3

:
5
=
(]
e
s

I
=3
=
[=]
wn
h

Figure 14

: Snapshot of a sample of the vendors table

11

Usage of the database

Requirements and Scenarios

Requirement 1: The database should serve as a backend to organise events and venues
Scenario: Let’s say that the organisers need to organise an award function on the 2nd day of
the event for the winners of beach soccer and volleyball matches held on the previous day. So
they want to find out which venues are available for an hour from 12.30 pm to 1.30 pm. This
is the time when the chief guest will be available to present the awards.

The following query allows the organisers to find the grounds that don’t have an ongoing

event during the mentioned time. Refer file: q1.sql

Data Output Messages Motifications

N I - N

name a
character varying (80)

Ground A

2 Ground B

iven du

Query Query History

1 --Query to find grounds that are unoccupied for a gi
2 select grounds.name from grounds

3

4 where grounds.name not in

5 (select a.name

& from grounds as a, events as b

7 where a.id= b.gr_id and start_t>'2023-12-02 12:30:00°'
8

raticn

and end_t<'2823-12-82

Figure 15: Query to identify which venues are free at a given time (i.e. no prescheduled event)

Requirement 2: Visitors should be able to find the nearby facilities and ongoing events
Scenario 1: Mr Dead Shapefiles is in the festival area and is looking for a toilet facility less
than 50m from him. The following query can help him find the facility. Refer file g2.sql

e -0 P %

Layers BE ,

« @ & T &% ») } —

v| @ Querylayer 2
V| ® users y
® sialls y &

v/ © grounds i

V| ® facilities | [+
~ [v| C9 arenas - . g
v [exhibition : | =
v [T food @

v/ [play
vH

(= Querylayer
~ |v| = OSM Standard F ® «

Layers | Browser

4t | saved query

Execute

1 Toilets 1

12 stalls
B users

[= vendors

=1 rama parasa

Table | preview | W Query (final_project) X

~ | Name save Delete Load File

Lrows, 0.474 seconds | Create 2 view Clear

name geom distance

0101000020110... |42.66577468581

V! Load as new layer

Column(s) with unique values ~ | ¥ Geometry column | geom -

Layer name (orefix)

Avoid selecting by feature id

Save As File

¥

Query History

Retrieve
columns

Set filter

Load

Figure 16: Query to find and display a toilet facility less than 50 m away.

12

Scenario 2: Ms Ecstatic Elephant is interested in finding information about the stalls less
than 50m from her. So she can decide which stall to go to and plan where to spend more

time. Refer file: q3.sql

® facifities
~ W 7 arenas
v/ [exhibition
food

VI piay
v/

DR 7
2 stalls
F & -0 l’_o]rx] 2 users
= _ vendors
Layers ClEl 3 v 1 rama parasa
« e T %% Info | Table | Preview | WP Query (final_project) X ‘
v & Querylayer 3 agf o o
& Querylayer 2 £l | saved query ~|Mame | || save || oDelete || LoadFie || saveasFie
V@ users T Cusy o find sialis 1ss chan 50 metres foem thr seer lecacion
] @ stalks 2 select stalls.id, stalls.type,
v/ © grounds 3 stalls.geom,

| Execute | 4rows, 0.265seconds | Createaview || Clear

4 st_distance (stalls.geom,users,location) as distance
s from stalls, users
6whers users.id=2 and
7 st_distance (stalls.geom,users.location) <sq
4

v

| | Query History

~ V| 3 OSM Standard
id type geom distance
116 food 0101000020110... | 37.02242770537...
217 food 0101000020110... | 13.79327491781...
g 31 food 0101000020110... | 14,59930090472... J
V' Load as new layer
Column(s) with unique values | id ~ | V| Geometry column | geom - \| ‘:m:: |
Layer name (prefix) | || setfiter |
Avaid selecting by feature id | Load |
| Layers | Browser [|| cancel
e to locate (Cirl+K) Coordinate | 9274980.7,2003404.0 |
. ey
Figure 17: Query to find stalls within 50 m of distance from the visitor
. 11 . .
Scenario 3: Ms Brilliant Bumblebee is in the play arena and wants to find out the events
.
happening right now (at the time of her visit). The following query helps find out all the
events happening at the time of her visit. Refer file: q4.sql
DI e = = 1
12 stalls]
- - - O B users
B0 EE A
Layers v 5 rama oarasa =4
YRRT G- » Info Table | Preview | WP Query (fnal_project) X ‘
v @ Querylayer 4 i —
@ Querylayer 3 |40 | Saved query | < teme | || save || Dekte || loadFie || SaveasFie |
& Querylayer.2 — | I —— e — T — =
T T -—guery ©o ¢ happening right now and its location
o eralls 2 select a.nams, a.typs, a.start t, a.end ¢,
B 3 grounds.name as venue, grounds.geom
V| © grounds . r—
r:) facilities 5 (select events.*
™ WD arenas & from events, users where users.id=3 and
o/ [exniition 7 users.present_time between events.start_t and events.end t) as a,
v [food & grounds
VI [play 9where a.gr_id=grounds.id =
v . 4 v
IV ¥ 0SMStandard | Execute | 1rows, 0.245seconds | Cresteaview || Clear | Query History |
name type start_t end_t venue geom
jTrEasurEHlmt Game 2023-12-03T10:... 2023-12-03T16:... Ground C 010100002017
4 »
] Load as new layer
Column(s) with urique values ~ | V| Geometry column | geom -\‘ Em::
Layer name (prefix) | || setfiter |
load |

Avoid selecting by feature id |

Figure 18: Query to find ongoing events and their location

13

Making queries accessible and efficient

Requirement 3: Display lists of events or facilities to visitors
This requirement essentially requires easy access and faster processing of

Indexes

Indexes allow for bulky queries to be processed faster. Since visitors will often pull the list of
events happening in the festival, it’s best to create an index on the events table. Further,
visitors will also want to query the locations of various facilities. So I also create a spatial
index for the facilities table.

Non-spatial index

Query Query History

1 CREATE INDEX svents_idx
2 ON events(name) ;

Spatial Index

Query Query History

1 CREATE INDEX facilities_didx
2 ON facilities
3 USING gist(geom);

Views

Since the list of events has to be frequently displayed to visitors, we can store the query as a
view. And views essentially query the table, they automatically use the indexes generated on
the table.

Query Query History

create view events_list as
select events.=*
from events

B W

order by start_t desc;

14

References

PostgreSQL Documentation
Amit Jha, Stackoverflow

Ministry of Tourism, Govt of India
Spatial Indexing — Introduction to PostGIS

15

https://www.postgresql.org/docs/
https://stackoverflow.com/questions/13418827/select-date-range-on-mysql-timestamp
https://utsav.gov.in/view-event/visakha-utsav
https://postgis.net/workshops/postgis-intro/indexing.html

16

